A data fusion framework with novel hybrid algorithm for multi-agent Decision Support System for Forest Fire
نویسندگان
چکیده
In this study Forest Fire Decision Support System (FOFDESS) which is a multi-agent Decision Support System for Forest Fire has been presented. Depending on the existing meteorological state and environmental observations, FOFDESS does the fire danger rating by predicting the forest fire and it can also approximate fire spread speed and quickly detect a started fire. Some data fusion algorithms such as Artificial Neural Network (ANN), Naive Bayes Classifier (NBC), Fuzzy Switching (FS) and image processing have been used for these operations in FOFDESS. These algorithms have been brought together by a designed data fusion framework and a novel hybrid algorithm called NABNEF (Naive Bayes Aided Neural-Fuzzy Algorithm) has been improved for fire danger rating in FOFDESS. In this state, FOFDESS is an integrated system which includes the dimensions of prediction, detection and management. As a result of the experiments, it was found out that FOFDESS helped determining the most accurate strategy for fire fighting by producing effective results. 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملA Novel Intelligent Energy Management Strategy Based on Combination of Multi Methods for a Hybrid Electric Vehicle
Based on the problems caused by today conventional vehicles, much attention has been put on the fuel cell vehicles researches. However, using a fuel cell system is not adequate alone in transportation applications, because the load power profile includes transient that is not compatible with the fuel cell dynamic. To resolve this problem, hybridization of the fuel cell and energy storage device...
متن کاملUtilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
متن کاملA Hybrid Fire Fly and Differential Evolution Algorithm for Optimization of a Mixed Repairable and Non-Repairable System Reliability Problem
In this paper, a hybrid meta-heuristic approach is proposed to optimize the mathematical model of a system with mixed repairable and non-repairable components. In this system, repairable and non-repairable components are connected in series. Redundant components and preventive maintenance strategies are applied for non-repairable and repairable components, respectively. The problem is formulate...
متن کاملA class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions
In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert Syst. Appl.
دوره 38 شماره
صفحات -
تاریخ انتشار 2011